If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+x-999*2=0
We add all the numbers together, and all the variables
x^2+x-1998=0
a = 1; b = 1; c = -1998;
Δ = b2-4ac
Δ = 12-4·1·(-1998)
Δ = 7993
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{7993}}{2*1}=\frac{-1-\sqrt{7993}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{7993}}{2*1}=\frac{-1+\sqrt{7993}}{2} $
| x^2+x-(999×2)=0 | | 3.2+10m=8.79 | | X/10x2+420=x/10x5 | | (2^x)=8 | | 42000=-3x | | 12w+4=20 | | 6x2-33x=0 | | Y/4+3=y/2 | | 6x+3=45-× | | X/6+x/8=14 | | 19x+6=13x+30 | | 5(x-4)÷2+7=37 | | 11x-69=180 | | a÷5+2=13 | | 0.33x=0.25 | | -(5x-6)-x=-6-6x | | 30-6w=5w=45 | | 60/5(x-5)=6 | | 494+0.10x=x | | d+18=8=9d | | (4w-36)(w+6)(5w-4)=0 | | 4(w-9)(w+6)(5w-4)=0 | | (1/(x)^0.5)=0.75 | | 2.4+10m=7.39 | | 3z+10=z+18 | | 0=16k^2-9 | | 3.4+10m=7.76 | | 2x-11=3x-9 | | 3z^2+1z+10=3 | | x^2+89=100 | | 3(t-8)(2t+1)(t+2)=0 | | 4(x+1)^2=-100 |